Answer:
0.6563 or 65.63% of brook trout caught will be between 12 and 18 inches
Step-by-step explanation:
Mean trout length (μ) = 14 inches
Standard deviation (σ) = 3 inches
The z-score for any given trout length 'X' is defined as:
e interval
For a length of X =12 inches:
According to a z-score table, a score of -0.6667 is equivalent to the 25.25th percentile of the distribution.
For a length of X =18 inches:
According to a z-score table, a score of 1.333 is equivalent to the 90.88th percentile of the distribution.
The proportion of trout caught between 12 and 18 inches, assuming a normal distribution, is the interval between the equivalent percentile of each length:
Answer:
5.5 Meters below sea level
Step-by-step explanation:
Since sea level is at 0 meters, the girl is already 1 meter below sea level. When she dives down another 4.5 meters, you just add
1 + 4.5 = 5.5
and that's your answer
:)
Answer:
9 1/9 per cousin
Step-by-step explanation:
if the aunt has 58 items to be distributed to 6 cousins, we would set a fraction of 58/6. performing that is 9 with 4/6 left over.
since there is 6 cousins, there will be 2/3 divided by 6 = 2/18, or 1/9
Answer:
Original position: base is 1.5 meters away from the wall and the vertical distance from the top end to the ground let it be y and length of the ladder be L.
Step-by-step explanation:
By pythagorean theorem, L^2=y^2+(1.5)^2=y^2+2.25 Eq1.
Final position: base is 2 meters away, and the vertical distance from top end to the ground is y - 0.25 because it falls down the wall 0.25 meters and length of the ladder is also L.
By pythagorean theorem, L^2=(y -0.25)^2+(2)^2=y^2–0.5y+ 0.0625+4=y^2–0.5y+4.0625 Eq 2.
Equating both Eq 1 and Eq 2: y^2+2.25=y^2–0.5y+4.0625
y^2-y^2+0.5y+2.25–4.0625=0
0.5y- 1.8125=0
0.5y=1.8125
y=1.8125/0.5= 3.625
Using Eq 1: L^2=(3.625)^2+2.25=15.390625, L=(15.390625)^1/2= 3.92 meters length of ladder
Using Eq 2: L^2=(3.625)^2–0.5(3.625)+4.0625
L^2=13.140625–0.90625+4.0615=15.390625
L= (15.390625)^1/2= 3.92 meters length of ladder
<em>hope it helps...</em>
<em>correct me if I'm wrong...</em>