Answer:
a. 3-methylbutan-2-ol
b. 2-methylcyclohexan-1-ol
Explanation:
For this reaction, we must remember that the hydroboration is an <u>"anti-Markovnikov" reaction</u>. This means that the "OH" will be added at the <em>least substituted carbon of the double bond.</em>
In the case of <u>2-methyl-2-butene</u>, the double bond is between carbons 2 and 3. Carbon 2 has two bonds with two methyls and carbon 3 is attached to 1 carbon. Therefore <u>the "OH" will be added to carbon three</u> producing <u>3-methylbutan-2-ol</u>.
For 1-methylcyclohexene, the double bond is between carbons 1 and 2. Carbon 1 is attached to two carbons (carbons 6 and 7) and carbon 2 is attached to one carbon (carbon 3). Therefore<u> the "OH" will be added to carbon 2</u> producing <u>2-methylcyclohexan-1-ol</u>.
See figure 1
I hope it helps!
Answer:
a new scientific discovery that benefits the environment
Answer:
2
Explanation:
There are some basic laws that guide the combination of elements chemically. These are the law of conservation of mass, law of definite proportion, law of multiple proportion and the law of reciprocal proportion.
For this question, the useful law to use is the law of definite proportion. Here, it is stated that no matter the method of preparation or source of preparation, the elements of a chemical compound are always present in a fixed ratio.
What this means that at any point in time, the compound titanium dioxide contains one atom of titanium and two atoms of oxygen. This means that both atoms are present at all times in a proportion of 1 to 2 .
Answer:
The answer is "6.52 kg and 13.1 kg"
Explanation:
For point a:
Equation:
Calculating the amount of
For point b:
Equation:
Calculating the amount of
Answer:
0.289J of heat are added
Explanation:
We can relate the change in heat of a substance with its increasing in temperature using the equation:
q = m*ΔT*S
<em>Where Q is change in heat</em>
<em>m is mass of substance (In this case, 0.0948g of water)</em>
<em>ΔT = 0.728°C</em>
<em>S is specific heat (For water, 4.184J/g°C)</em>
Replacing:
q = 0.0948g*0.728°C*4.184J/g°C
q = 0.289J of heat are added