The mass of the aeroplane is 300,000 kg.
<h3>What is Newton's second law of motion?</h3>
It states that the force F is directly proportional to the acceleration a of the body and its mass.
The law is represented as
F =ma
where acceleration a = velocity change v / time interval t
Given is the aeroplane lands at a speed of 80 m/s. After landing, the aeroplane takes 28 s to decelerate to a speed of 10 m/s. The mean resultant force on the aeroplane as it decelerates is 750 000 N.
The force expression will be
F = mv/t
Substitute the values and we have
750000 = m x (80 -10)/ 28
750,000 = m x 2.5
m = 300,000 kg
Thus, the mass of the aeroplane is 300,000 kg.
Learn more about Newton's second law of motion.
brainly.com/question/13447525
#SPJ1
The correct matches are as follows:
<span>1. first nuclear reactor
</span>Fermi - an italian physicist who made the first nuclear reactor<span>
2. </span>1/0 η<span>
</span>atomic mass <span>
3. decaying nuclei
</span>fission<span> - nuclear reaction from a heavy elements to lighter elements
4. number of neutrons and protons
</span>neutron <span>
5. builds heavier elements
</span>fusion - nuclear reaction from two or more elements to a heavier element<span>
6. discovered radioactivity
</span>Curie<span>
7. unit of radiation
</span> Becquerel
Answer:
mass X velocity
Explanation:
The momentum of a body is the product of its mass and velocity
A curved line on a position/time graph shows that the speed is changing.
So right there, we know there is acceleration.