Answer:
Polar
Explanation:
A polar climate is a place where the climate usually has a temperature below freezing, icy, and covered in snow. These areas do not get direct heat and sunlight from the sun. Polar climates are located at the North Pole of the Arctic, and at the South Pole on the continent of Antarctica.
Density is the mass of compound divided by its volume can be shown as follows:
40 mL of snow having 20 g of mass calculated from density.
Now, 10 cm of snow = 3.93 inches = 20 g
As, 10 inches of rain will produce 11 inches of ice as the volume of ice is bigger than rain water.
10 inches rain = 11 inches snow
3.93 inches of snow produced by
Thus, 3.57 incehs of rain produces by 10 cm snow.
First, we have to remember the molarity formula:
Part 1:
In this case, our solute is sodium nitrate (NaNO3), and we have the mass dissolved in water, then we have to convert grams to moles. For that, we need the molecular weight:
Then, we calculate the moles present in the solution:
Now, we have the necessary data to calculate the molarity (with the solution volume of 200 mL):
The molarity of this solution equals 0.2339 M.
Part 2:
In this case, we have the same amount (in moles and mass) of sodium nitrate, but a different volume of solution, then we only have to change it:
So, the molarity of this solution is 0.1701 M.
Answer:
synergistic
Explanation:
Synergistic means: relating to the interaction or cooperation of two or more organizations, substances, or other agents to produce a combined effect greater than the sum of their separate effects
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>