As a head-up, it is important to notice that a white dwarf only shines thanks to the stored energy and light, because a white dwarf doesn't have any hydrogen left to perform nuclear fusion.
Now the process:
First, the white dwarf accumulates all the extracted matter from its companion, onto its own surface. This extra matter increases the white dwarf's temperature and density.
After a while, the star reaches about 10 million K, so nuclear fusion can begin. The hydrogen that has been "stolen" from the other star and accumulated in the white dwarf's surface it's used for the fusion, dramatically increasing the star's brightness for a short time, causing what we know as a Nova.
As this fuel its quickly burnt out or blown into space, the star goes back to its natural white dwarf state. Since the white dwarf nor the companion star are destroyed in this process, it can happen countless of times during their lifespan.
When it reaches it's peak, the energy is converted into potential as it slows down, then back to kinetic as it goes back to the lowest point.
Answer:
hagcsgdufgeuwuwgsgwhajisydcbeek
Explanation:
edowooooooww
I dont know what the statements are but concave lens are thinner in the middle which cause light to diverge or scatter
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia
Final mass moment of inertia
Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂
ω₂=1.20