<span>C7H8
First, lookup the atomic weight of all involved elements
Atomic weight of carbon = 12.0107
Atomic weight of hydrogen = 1.00794
Atomic weight of oxygen = 15.999
Then calculate the molar masses of CO2 and H2O
Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087 g/mol
Molar mass H2O = 2 * 1.00794 + 15.999 = 18.01488 g/mol
Now calculate the number of moles of each product obtained
Note: Not interested in the absolute number of moles, just the relative ratios. So not going to get pedantic about the masses involved being mg and converting them to grams. As long as I'm using the same magnitude units in the same places for the calculations, I'm OK.
moles CO2 = 3.52 / 44.0087 = 0.079984
moles H2O = 0.822 / 18.01488 = 0.045629
Since each CO2 molecule has 1 carbon atom, I can use the same number for the relative moles of carbon. However, since each H2O molecule has 2 hydrogen atoms, I need to double that number to get the relative number of moles for hydrogen.
moles C = 0.079984
moles H = 0.045629 * 2 = 0.091258
So we have a ratio of 0.079984 : 0.091258 for carbon and hydrogen. We need to convert that to a ratio of small integers. First divide both numbers by 0.079984 (selected since it's the smallest), getting
1: 1.140953
The 1 for carbon looks good. But the 1.140953 for hydrogen isn't close to an integer. So let's multiply the ratio by 1, 2, 3, 4, ..., etc and see what each new ratio looks like (Effectively seeing what 1, 2, 3, 4, etc carbons look like)
1 ( 1 : 1.140953) = 1 : 1.140953
2 ( 1 : 1.140953) = 2 : 2.281906
3 ( 1 : 1.140953) = 3 : 3.422859
4 ( 1 : 1.140953) = 4 : 4.563812
5 ( 1 : 1.140953) = 5 : 5.704765
6 ( 1 : 1.140953) = 6 : 6.845718
7 ( 1 : 1.140953) = 7 : 7.986671
8 ( 1 : 1.140953) = 8 : 9.127624
That 7.986671 in row 7 looks extremely close to 8. I doubt I'd get much closer unless I go to extremely high integers. So it looks like the empirical formula for toluene is C7H8</span>
Answer:it is wrong answer
Explanation:estro man
Animal fibers are fibers from animals and consist mainly of protein. They contain not only silk fiber from silkworms and fur fiber from sheep wool but also collagen fiber extracted from animal skins, chitin from crustaceans, and shellfish like shrimp and chitosan made by deacetylating chitin.
The temperatures of the gases will not be equal as oxygen gas will have a higher temperature than hydrogen gas because it has fewer moles overall.
<h3>Briefing :</h3>
The mechanical behavior of ideal gases is described by the ideal gas law. It has the ability to compute the volume of gases created or absorbed.
This equation is frequently used in chemical equations to convert between volumes and molar quantities.
According to the ideal gas law, there is a relationship between gas pressure, temperature, and volume.
PV = nRT
V is the same for both
So,
T is same for both.
When n increases, T decreases, so since n for hydrogen gas is 1 and n for oxygen gas is 0.5, it follows that oxygen gas will have a higher temperature than hydrogen gas because it has fewer moles overall.
To know more about ideal gases :
brainly.com/question/15962335
#SPJ9