P = 2.30 atm
Volume in liter = 2.70 mL / 1000 => 0.0027 L
Temperature in K = 30.0 + 273 => 303 K
R = 0.082 atm
molar mass O2 = 31.9988 g/mol
number of moles O2 :
P * V = n * R* T
2.30 * 0.0027 = n * 0.082 * 303
0.00621 = n * 24.846
n = 0.00621 / 24.846
n = 0.0002499 moles of O2
Mass of O2:
n = m / mm
0.0002499 = m / 31.9988
m = 0.0002499 * 31.9988
m = 0.008 g
The answer would be c as the cart is not in motion therefor ruling out kinetic and it is completely at rest making all of it energy potential
Answer:
A net ionic equation shows only the chemical species that are involved in a reaction, while a complete ionic equation also includes the spectator ions.
Brainlist pls!
Answer:
(a) H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
Explanation:
The equation for your buffer equilibrium is:
H₃PO₄(aq) + H₂O(ℓ) ⇌ H₃O⁺(aq)+ H₂PO₄⁻(aq)
(a) Adding H₃O⁺
The hydronium ions react with the basic dihydrogen phosphate ions.
H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) Adding OH⁻
The OH⁻ ions react with the more acidic hydronium ions.
OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
Temperature will raise and water will evaporate