Answer:
709 g
Step-by-step explanation:
a) Balanced equation
Normally, we would need a balanced chemical equation.
However, we can get by with a partial equation, as log as carbon atoms are balanced.
We know we will need an equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 30.07 236.74
C₂H₆ + … ⟶ C₂Cl₆ + …
m/g: 90.0
(i) Calculate the moles of C₂H₆
n = 90.0 g C₂H₆ × (1 mol C₂H₆ /30.07 g C₂H₆)
= 2.993 mol C₂H₆
(ii) Calculate the moles of C₂Cl₆
The molar ratio is (1 mol C₂Cl₆/1 mol C₂H₆)
n = 2.993 mol C₂H₆ × (1 mol C₂Cl₆/1 mol C₂H₆)
= 2.993 mol C₂Cl₆
(iii) Calculate the mass of C₂Cl₆
m = 2.993 mol C₂Cl₆ × (236.74 g C₂Cl₆/1 mol C₂Cl₆)
m = 709 g C₂Cl₆
The reaction produces 709 g C₂Cl₆.
The Law of Conservation of Matter says that the amount of matter stays the same, even when matter changes form. ... Another way to explain the law of conservation of matter is to say that things cannot be magically created or destroyed. Please mark brainliest?
The representative elements are elements where the s and p orbitals are filling. The transition elements are elements where the d orbitals (groups 3–11 on the periodic table) are filling, and the inner transition metals are the elements where the f orbitals are filling.
Answer:
The magnesium will burn until consumed entirely. There is much more oxygen available in the atmosphere than needed to consume the magnesium. Thus the magnesium is the limiting reactant because it determines the amount of product formed.
Explanation:
Mg produces less amount of MgO than O2; therefore Mg is the limiting reagent. O2 produces more amount of MgO than Mg; therefore O2 is the excess reagent.