A Is the answer babez a:)
By definition of noble gases, neon does not easily form an ionic bond because it belongs to the group of noble or inert gases, so its reactivity is practically nil.
<h3>Noble gases</h3>
Noble gases are not very reactive, that is, they practically do not form chemical compounds. This means that they do not react with other substances, nor do they even react between atoms of the same gas, as is the case with diatomic gases such as oxygen (O₂).
The chemical stability of the noble gases and therefore the absence of spontaneous evolution towards any other chemical form, implies that they are already in a state of maximum stability.
All chemical transformations involve valence electrons, they are involved in the process of covalent bond formation and the formation of ions. Therefore, the practically null reactivity of the noble gases is due to the fact that they have a complete valence shell, which gives them a low tendency to capture or release electrons.
Since the noble gases do not react with the other elements, they are also called inert gases.
<h3>Neon</h3>
Neon does not easily form an ionic bond because it belongs to the group of noble or inert gases, so its reactivity is practically nil.
Learn more about noble gases:
brainly.com/question/8361108
brainly.com/question/11960526
brainly.com/question/19024000
Answer:
just see it it will help trust me its my school work
Explanation:
Answer:
Ten possibilities for staving off catastrophic climate change ... What can one person, or even one nation, do on their own to slow and reverse climate change? ... could reduce greenhouse gas emissions to safer levels—there are ... mode of transport that does not require anything other than human energy.
Explanation:
Answer:
The equivalent circuit for the electrode while the electrolyte gel is fresh
From the uploaded diagram the part A is the electrolyte, the part part B is the electrolyte gel when is fresh and the part C is the surface of the skin
Now as the electrolyte gel start to dry out the resistance of the gel begins to increase and this starts to limit the flow of current . Now when the gel is then completely dried out the resistance of the gel then increases to infinity and this in turn cut off flow of current.
The diagram illustrating this is shown on the second uploaded image
Explanation: