Answer:
The calcium concentration must be greater outside the cell than inside the cell.
Explanation:
My previous answer was deleted from the explanation I provided from another website.
Helium,it has an atomic mass of 4,which means total no. of protons and neutrons,so I think you meant 2 protons and an atomic mass of 4
Answer:
3.47 ×10^-10
Explanation:
The equation of the reaction is 2Cr3+(aq) + Pb(s)------->2Cr2+(aq) + Pb2+(aq)
A total of two moles of electrons were transferred in the process. The chromium was reduced while the lead was oxidized. Hence the lead species will constitute the oxidation half equation and the chromium will constitute the reduction half equation.
E°cell = E°cathode - E°anode
E°cathode = -0.41 V
E°anode = -0.13 V
E°cell = -0.41 -(-0.13) = -0.28 V
From
E°cell = 0.0592/n log K
n= 2, K= the unknown
-0.28 = 0.0592/2 log K
log K = -0.28/0.0296
log K = -9.4595
K = Antilog ( -9.4595)
K= 3.47 ×10^-10
Answer:
moles Fe₂O₃ = 0.938 mole
Explanation:
Convert given data to moles, solve in terms of moles by reaction ratios in balanced equation. After obtaining answer in moles, convert to needed dimension. In this case, no conversions are needed.
4Fe + 3O₂ => 2Fe₂O₃
105g/56g·mol⁻¹
= 1.875 mol Fe => => => => => => 2/4(1.875 mol Fe₂O₃) = 0.938 mol Fe₂O₃
Answer:
6.32 moles of Fe
Explanation:
The given chemical equation is presented as follows;
2Fe + 3Cl₂ → 2FeCl₃
The mass of Cl₂ in the reaction = 336 grams
The molar mass of chlorine gas Cl₂ = 35.435 g/mol
The number of moles, n = Mass/(Molar mass)
The number of moles of Cl₂ in the reaction, n = 336 g/(35.435 g/mol) ≈ 9.842 moles
From the given reaction, 3 moles of Cl₂ react with 2 moles of Fe to produce 2 moles of FeCl₃
By the law of definite proportions, we have that 9.482 moles of Cl₂ will react with approximately 9.482 × 2/3 = 6.32 moles of Fe to produce approximately 6.32 moles of FeCl₃
Therefore, approximately 6.32 moles of Fe will be required to react with 336 grams of Cl₂.