Answer:
-43
Step-by-step explanation:
Input 6 where a is so then do -7 x 6 which would be -42
the equation is now b = -1 - 42
-1 -42 = -43
The answer to the question is 0.6
Answer:
C)
Step-by-step explanation:
Line of best fit (trendline) : a line through a scatter plot of data points that best expresses the relationship between those points.
All the given options for the line of best fit are linear equations.
Therefore, we can add the line of best fit to the graph (see attached), remembering to have roughly the same number of points above and below the line.
Linear equation:
(where is the slope and is the y-intercept)
From inspection of the line of best fit, we can see that the y-intercept (where x = 0) is approximately 8. So this suggests that options C or D are the solution.
We can also see that the slope (gradient) of the line of best fit is approximately -0.5 (as the rate of change (y/x) is -1 unit of y for every +2 units of x).
Therefore, C is the solution, and the closet approximation to the line of best fit is
Answer:
There would be 120 different ways
Step-by-step explanation:
20×6=120
1. Start with ΔCIJ.
- ∠HIC and ∠CIJ are supplementary, then m∠CIJ=180°-7x;
- the sum of the measures of all interior angles in ΔCIJ is 180°, then m∠CJI=180°-m∠JCI-m∠CIJ=180°-25°-(180°-7x)=7x-25°;
- ∠CJI and ∠KJA are congruent as vertical angles, then m∠KJA =m∠CJI=7x-25°.
2. Lines HM and DG are parallel, then ∠KJA and ∠JAB are consecutive interior angles, then m∠KJA+m∠JAB=180°. So
m∠JAB=180°-m∠KJA=180°-(7x-25°)=205°-7x.
3. Consider ΔCKL.
- ∠LFG and ∠CLM are corresponding angles, then m∠LFG=m∠CLM=8x;
- ∠CLM and ∠CLK are supplementary, then m∠CLM+m∠CLK=180°, m∠CLK=180°-8x;
- the sum of the measures of all interior angles in ΔCLK is 180°, then m∠CKL=180°-m∠CLK-m∠LCK=180°-(180°-8x)-42°=8x-42°;
- ∠CKL and ∠JKB are congruent as vertical angles, then m∠JKB =m∠CKL=8x-42°.
4. Lines HM and DG are parallel, then ∠JKB and ∠KBA are consecutive interior angles, then m∠JKB+m∠KBA=180°. So
m∠KBA=180°-m∠JKB=180°-(8x-42°)=222°-8x.
5. ΔABC is isosceles, then angles adjacent to the base are congruent:
m∠KBA=m∠JAB → 222°-8x=205°-7x,
7x-8x=205°-222°,
-x=-17°,
x=17°.
Then m∠CAB=m∠CBA=205°-7x=86°.
Answer: 86°.