When the incident light is yellow the width of the central band greater. Single-wavelength light sources are known as monochromatic lights, where mono stands for one and chroma for color. Monochromatic lights are defined as visible light that falls inside a specific range of wavelengths. It has a wavelength that falls within a constrained wavelength range.
A laser beam is the ideal illustration of monochromatic light. A monochromatic light beam produced by a single atomic transition with a particular single wavelength is what makes up a laser. A color scheme that consists solely of different shades of one color is referred to as monochromatic.
To learn more about monochromatic, click here.
brainly.com/question/23624834
#SPJ4
Observer A is moving inside the train
so here observer A will not be able to see the change in position of train as he is standing in the same reference frame
So here as per observer A the train will remain at rest and its not moving at all
Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body
So here observer B will see the actual motion of train which is moving in forward direction away from the platform
Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction
So the distance between them will decrease at faster rate
Now as per Newton's II law
F = ma
Now if train apply the brakes the net force on it will be opposite to its motion
So we can say
- F = ma
so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate
It is not affected by the gravity because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train
So there is no effect on train motion
Answer:
Not possible
Explanation:
Unless there's some extra external force to keep both particles at rest after the collision, the momentum must be conserved before and after the collision.
So before the collision, 1 particle is at rest, 1 not -> total momentum is non-zero
After the collision, both particles are at rest -> total momentum is zero which is different from before.
Therefore this is not possible.
<span>Mendeleev observed that tellurium has chemical properties like other elements in its group, and he did not know that neutrons cause the greater atomic mass is the most likely reason.</span>
In a nuclear power plant, you start off with uranium (nuclear energy), and a lot of that nuclear energy is released by heat energy. Heat then boils water and drives a turbine for a generator, which creates kinetic energy, which produces electrical energy.
In other words, your answer is B.