The answer is 2.63m/s^2! You use the formula F=ma, 112 = 42.6(a), a= 2.63m/s^2.
Answer:
cooooooooooooooollllllllll
Explanation:
Yes, the volume of the cylinder will remain constant. As the radius decreases, the height will increase to make sure that the volume is kept the same.
We have been given a value of dr/dt and are required to find dh/dt
Because the volume is constant, we can plug it into the formula for the volume of the cylinder and rearrange it to make h the subject:
128 = πr²h
h = 128/πr²
Now we differentiate both sides:
dh/dr = -256/πr³
Applying the chain rule:
dh/dt = dh/dr x dr/dt
dh/dt = (-256/πr³) x -0.05
dh/dt = 64/5πr³; substituting the value of r
dh/dt = 64/5π(1.5)³
dh/dt = 1.21 in/sec
Liquids<span> are not </span>packed<span> as tightly as </span>solids<span>. And gases are very loosely </span>packed<span>. The spacing of the molecules enables </span>sound<span> to travel much faster through a </span>solid<span> than a gas. </span>Sound<span> travels about four times faster and farther in water than it does in air.</span>
Answer:
In free fall, mass is not relevant and there's no air resistance, so the acceleration the object is experimenting will be equal to the gravity exerted. If the object is falling on our planet, the value of gravity is approximately 9.81ms2 .