Answer:
the ball travelled approximately 60 m towards north before stopping
Explanation:
Given the data in the question;
First course : = 0.75 m/s², = 20 m, = 10 m/s
now, form the third equation of motion;
v² = u² + 2as
we substitute
² = (10)² + (2 × 0.75 × 20)
² = 100 + 30
² = 130
= √130
= 11.4 m/s
for the Second Course:
= 11.4 m/s, = -1.15 m/s², = 0
Also, form the third equation of motion;
v² = u² + 2as
we substitute
0² = (11.4)² + (2 × (-1.15) × )
0 = 129.96 - 2.3
2.3 = 129.96
= 129.96 / 2.3
= 56.5 m
so;
|d| = √( ² + ² )
we substitute
|d| = √( (20)² + (56.5)² )
|d| = √( 400 + 3192.25 )
|d| = √( 3592.25 )
|d| = 59.9 m ≈ 60 m
Therefore, the ball travelled approximately 60 m towards north before stopping
The strong nuclear force overcomes the electric force of repulsion thatacts among the protons in thenucleus. B. The weak nuclear force is involved in certain types of radioactive processes. A.The strong nuclear force is a powerful force of attraction that acts only on theneutrons and protons in the nucleus.
Answer:
Option D
490 J
Explanation:
When at a height of 100 am above and released, the ball initially posses only potential energy. When it falls, some potential energy is converted to kinetic energy.
Initial potential energy= mgh where m is the mass, g is the acceleration due to gravity and h is height. Substituting 1 Kg for m, 9.81 for g and 100 m for h then
PE initial = 1*9.81*100= 981 J
At 50 m, PE will be 1*9.81*50=490.5 J
Subtracting PE at 50 m from initial PE we get the energy that has been converted to kinetic energy hence
981-490.5= 490.5 J
Approximately, 490 J
Its actually C. I did the question on USA test prep and it said the correct answer was C.
This is where we have to admit that gravitational potential energy is
one of those things that depends on the "frame of reference", or
'relative to what?'.
Potential energy = (mass) x (gravity) x (<em>height</em>).
So you have to specify <em><u>height above what</u></em> .
-- With respect to the ground, the ball has zero potential energy.
(If you let go of it, it will gain zero kinetic energy as it falls to
the ground.)
-- With respect to the floor in your basement, the potential energy is
(3) x (9.8) x (3 meters) = 88.2 joules.
(If you let go of it, it will gain 88.2 joules of kinetic energy as it falls
to the floor of your basement.)
-- With respect to the top of that 10-meter hill over there, the potential
energy is
(3) x (9.8) x (-10) = -294 joules
(Its potential energy is negative. After you let go of it, you have to give it
294 joules of energy that it doesn't have now, in order to lift it to the top of
the hill <em>where it will have zero</em> potential energy.)