Answer:
Step-by-step explanation:
The Order of Operations is very important when simplifying expressions and equations. The Order of Operations is a standard that defines the order in which you should simplify different operations such as addition, subtraction, multiplication and division.
This standard is critical to simplifying and solving different algebra problems. Without it, two different people may interpret an equation or expression in different ways and come up with different answers. The Order of Operations is shown below.
Parentheses and Brackets -- Simplify the inside of parentheses and brackets before you deal with the exponent (if any) of the set of parentheses or remove the parentheses.
Exponents -- Simplify the exponent of a number or of a set of parentheses before you multiply, divide, add, or subtract it.
Multiplication and Division -- Simplify multiplication and division in the order that they appear from left to right.
Addition and Subtraction -- Simplify addition and subtraction in the order that they appear from left to right.
Before we begin simplifying problems using the Order of Operations, let's examine how failure to use the Order of Operations can result in a wrong answer to a problem.
Without the Order of Operations one might decide to simplify the problem working left to right. He or she would add two and five to get seven, then multiply seven by x to get a final answer of 7x. Another person might decide to make the problem a little easier by multiplying first. He or she would have first multiplied 5 by x to get 5x and then found that you can't add 2 and 5x so his or her final answer would be 2 + 5x. Without a standard like the Order of Operations, a problem can be interpreted many different ways
Answer:
13,930
Step-by-step explanation:
hope this helps!
Answer:
g^5h^2
Step-by-step explanation:
12g^5h^4, g^5h^2
This is one way of doing it. Break down every number and every variable into a product of the simplest factors. Then see how many of each factor appear in both monomials.
12g^5h^4 = 2 * 2 * 3 * g * g * g * g * g * h * h * h * h
g^5h^2 = g * g * g * g * g * h * h
So far you see every single prime factor of each monomial.
Now I will mark the ones that are present in both. Those are the common factors.
12g^5h^4 = 2 * 2 * 3 * g * g * g * g * g * h * h * h * h
g^5h^2 = g * g * g * g * g * h * h
The greatest common factor is the product of all the factors that appear in both monomials.
GCF = g * g * g * g * g * h * h = g^5h^2
That would a set of 5 numbers in ascending order with 4 being the middle one and the other 4 being the highest possible So it is
2, 3, 4, 9, 10
Mean is 28/5 = 5.6 answer
( I am assuming that each number is different)
Of duplicates is allowed then its 4 4 4 10 10 whose mean is 6.4