Answer:
See below
Explanation:
You have to heat the calorimeter to 100 C from 20 C
this will take .20 kg * 390 j /kg-C * 80 C = <u>6240 j</u>
You have to heat the mass of water to boiling point (100 C ) from 20C
this will take
.50 kg * 4182 j/kg-C * 80 = <u>167,280 j </u>
AND you have to add enough heat to boil off .03 kg of water:
.03 kg * (2260000 j/kg-C ) =<u> 67,800 j</u>
<u />
Power = joules / sec = (6240 + 167280 + 67800) / 274.8 =<u> 878 watts </u>
<u />
<u>Your answer may differ just a bit for slightly different or rounded values of specific heat or heat of fusion for water .....</u>
Answer:
The current will decrease.
Explanation:
When another bulb is added, the resistance is going to increase. Keep in mind that the current is inversely proportional to the resistance (<em>Ohm's law: R= </em><em>V</em><em>/</em><em>I</em><em> </em><em>).</em> Therefore when the resistance increase, the current running in the circuit will decrease.
Answer:
How much you pay in taxes depends on the amount of your taxable income
Explanation:
The total amount expected to be payed as taxes is a factor of the amount of taxable income earned within the given tax period.
The taxable income is found by subtracting the amount of deductions and exemption allowed in the tax year from the gross income. It is also specified as the adjusted gross income
The set marginal tax rate indicates the percentage of the taxable income that is to be paid as taxes, such that there are three different ranges or tax brackets and taxes are paid according to the bracket to which a taxable income belongs.
Answer:
t = 4.1 seconds
Explanation:
It is given that,
Width of road which is to be crossed by a man is 8.25 m, it means it is distance to be covered.
Speed of man is 2.01 m/s
We need to find the time taken by the man to cross the road. It is a concept of speed. Speed of a person is given by total distance covered divided by time taken. So,
t is time taken
So, the time taken by the man to cross the road is 4.1 seconds.
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse: