5.5.ooooooooooooooooooooooooooooo1111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222333333333333333333333333333333333333333333344444444444444444444444444444444444444444444445555555555555555555555555555555555555555556666666666666666666666666666666666666777777777777777777777777777777777777788888888888888888889999999999999999999999999999999999999999999999999999999999999999999999999999999999
Let x = number of cups of ingredient B if 2 cups of ingredient A are used. Set up a proportion: (1/2)/(1 2/5) = (2)/x. Cross multiplying we get (1/2)x = (1 2/5)(2)
(1/2)x = 14/5, so x = 28/5 = 5 3/5 cups.
Answer:
2[(1 + 5x) (1 - 5x)]
Step-by-step explanation:
Given:
Expression
2 - 50x²
Find:
Factorization of the given expression
Computation:
2 - 50x²
By taking 2 as common
⇒ 2[1 - 25x²]
⇒ 2[(1)² - (5x)²]
We know that;
⇒ a² - b² = (a + b)(a - b)
In given expression;
⇒ a = 1
⇒ b = 5x
⇒ 2[(1)² - (5x)²]
2[(1 + 5x) (1 - 5x)]
Factorization of the given expression
2[(1 + 5x) (1 - 5x)]