Mass, air has that. Since what fills up a balloon? A gas
Shape, it has no definite shape. This one is accurate, it has no definite shape, it takes the shape of the object it's in.
Volume, does air take up space? If it does then yep. Balloon example/
Density, yes it does, because it's tightly wounded up.
D
1.75 moles ChCl3 x (6.02 x 10 ^-23) / 1 mole = 1.0535 x 10^-22 atoms.
hope this was helpful :)
Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
Answer:
NH₄Cl, Magnesium sulfate, KCN
Explanation:
Determine whether the given compound name or formula contains a polyatomic ion.
- NH₄Cl. YES. It contains the polyatomic ion ammonium NH₄⁺.
- Magnesium sulfate. YES. It contains the polyatomic ion sulfate SO₄²⁻.
- Sodium phosphide Na₃P. NO.
- Calcium hydroxide Ca(OH)₂. NO.
- KCN. YES. It contains the polyatomic ion cyanide CN⁻.
Answer: The value of the equilibrium constant Kc for this reaction is 3.72
Explanation:
Equilibrium concentration of =
Equilibrium concentration of =
Equilibrium concentration of =
Equilibrium concentration of =
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
For the given chemical reaction:
The expression for is written as:
Thus the value of the equilibrium constant Kc for this reaction is 3.72