The answer is 267.93 g
Molar mass of CaBr2 is the sum of atomic masses of Ca and Br:
Mr(CaBr2) = Ar(Ca) + 2Ar(Br)
Ar(Ca) = 40 g/mol
Ar(Br) = 79.9 g/mol
Mr(CaBr2) = 40 + 2 * 79.9 = 199.8 g/mol
The percentage of Br in CaBr2 is:
2Ar(Br) / Mr(CaBr2) * 100 = 2 * 79.9 / 199.8 * 100 = 79.98%
Now make a proportion:
x g in 79.98%
335 g in 100%
x : 79.98% = 335 g : 100%
x = 79.98% * 335 g : 100%
x = 267.93 g
False: No,any particles of matter do not have any potential or kinetic energy.
You just need to multiply the total mass by the decimal value of the part that is tin. 133.8*0.103=13.8g (following the rules of significant figures).
Answer: B). little wind
Explanation: Deserts have few large animals, fertile soil, and little rainfall but they have lots of wind
Hey there!
Ca + H₃PO₄ → Ca₃(PO₄)₂ + H₂
Balance PO₄.
1 on the left, 2 on the right. Add a coefficient of 2 in front of H₃PO₄.
Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + H₂
Balance H.
6 on the left, 2 on the right. Add a coefficient of 3 in front of H₂.
Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Balance Ca.
1 on the right, 3 on the right. Add a coefficient of 3 in front of Ca.
3Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Our final balanced equation:
3Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Hope this helps!