Answer;
-4. metallic, because the valance electrons are mobile
Explanation;
-Electrical conductivity in metals is a result of the movement of electrically charged particles.The atoms of metal elements are characterized by the presence of valence electrons (electrons in the outer shell of an atom) that are free to move about.
-Therefore; Metallic elements such as sodium and potassium conducts electricity in solid form due to the presence of delocalized valence electrons. These electrons can move freely within the structure of a metal when an electric current is applied.
Answer:
Rem is used to measure biological risk, and rad is used to measure absorbed radiation.
Explanation:
Answer:
Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration = 7.50 mg
Final concentration = 0.25 mg
Time = ?
Applying in the above equation, we get that:-
Answer:
B. 1-Butene rightarrow (1) BH3: THF (2)H202, OH-
Explanation:
In the hydroboration of alkenes, an alkene is hydrated to form an alcohol with anti-Markovnikov orientation.
the reagent BH₃:THF is the way that borane is used in organic reactions. The BH₃ adds to the double bond of an alkene to form an alkyl borane. Peroxide hydrogen in basic medium oxidizes the alkyl borane to form an alcohol. Indeed, hydroboration-oxidation converts alkenes to alcohols by adding water through the double bond, with anti-Markovnikov orientation.