Answer:
a.Many mitochondrial genes resemble proteobacteria genes, while the genes in the chloroplast resemble genes found in some photosynthetic bacteria.
c.Mitochondria and chloroplasts both have their own circular DNA and 70S ribosomes that are similar to those found in bacteria.
d.Mitochondria and chloroplasts replicate by a process similar to mitosis.
Explanation:
Endosymbiotic theory states that mitochondria and chloroplast which are organelles of eukaryotic cells were once independently living micro-organisms but with due course of time eukaryotic cells engulfed them and they become an integral part of these eukaryotic cells.
The resemblance between mitochondrial genes with those of proteobacteria and chloroplast genes with photosynthetic bacteria strongly support endosymbiotic theory. Apart from this, the presence of their own DNA that too circular just like prokaryotic microbes and 70 S ribosomes also support this theory. Also just like prokaryotic cells, before cell division mitochondria and chloroplasts undergo replication by means of a process known as binary fission.
Yes, it is possible.
In this case both of the parental plants were heterozygotes and they manifested dominant allele in their phenotype, which is round seed.
P: Aa x Aa
F5: AA, Aa, aA, aa - possible genotypes in fifth generations.
A- dominant allele (round seeds); a- recessive allele (wrinkled seeds)
Wrinkled phenotype is manifested only if there are two recessive alleles present.
The dissolved sugars produced in the leaves of a maple tree move to the roots through the<em><u> phloem</u></em>. It is a tissue that transports nutrients to where it is needed
Hope it helps:)
Hi.
The structure which is present in both of those cells is:
D. Plasma membrane.
Vacuoles are only in eukaryotic cells. The same with Golgi complex and nucleus.
Hope it helps!