I think that in order for work to be done, the object must move in the direction of the force and move over a distance.
Answer:
Explanation:
<u>Friction Force</u>
When objects are in contact with other objects or rough surfaces, the friction forces appear when we try to move them with respect to each other. The friction forces always have a direction opposite to the intended motion, i.e. if the object is pushed to the right, the friction force is exerted to the left.
There are two blocks, one of 400 kg on a horizontal surface and other of 100 kg on top of it tied to a vertical wall by a string. If we try to push the first block, it will not move freely, because two friction forces appear: one exerted by the surface and the other exerted by the contact between both blocks. Let's call them Fr1 and Fr2 respectively. The block 2 is attached to the wall by a string, so it won't simply move with the block 1.
Please find the free body diagrams in the figure provided below.
The equilibrium condition for the mass 1 is
The mass m1 is being pushed by the force Fa so that slipping with the mass m2 barely occurs, thus the system is not moving, and a=0. Solving for Fa
The mass 2 is tried to be pushed to the right by the friction force Fr2 between them, but the string keeps it fixed in position with the tension T. The equation in the horizontal axis is
The friction forces are computed by
Recall N1 is the reaction of the surface on mass m1 which holds a total mass of m1+m2.
Replacing in [1]
Simplifying
Plugging in the values
WORKDONE = FORCE * DISPLACEMENT
W=F*S
HERE, THE FORCE = 100N AND DISTANCE = 20M
WORKDONE = 100*20
WORKDONE=2000
ITS S.I UNIT IS JOULE OR J
SO, 2000J
Answer:
Temperature of water leaving the radiator = 160°F
Explanation:
Heat released = (ṁcΔT)
Heat released = 20000 btu/hr = 5861.42 W
ṁ = mass flowrate = density × volumetric flow rate
Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³
ṁ = 1000 × 0.000126 = 0.126 kg/s
c = specific heat capacity for water = 4200 J/kg.K
H = ṁcΔT = 5861.42
ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C
And in change in temperature terms,
10°C= 18°F
11.08°C = 11.08 × 18/10 = 20°F
ΔT = T₁ - T₂
20 = 180 - T₂
T₂ = 160°F
Answer:
The wagon will move to the right.
Explanation:
From the question given above, the following data were obtained:
Force applied to the left (Fₗ) = 10 N
Force applied to the right (Fᵣ) = 30 N
Direction of the wagon =.?
To determine the direction in which the wagon will move, we shall determine the net force acting on the wagon. This can be obtained as follow:
Force applied to the left (Fₗ) = 10 N
Force applied to the right (Fᵣ) = 30 N
Net force (Fₙ) =?
Fₙ = Fᵣ – Fₗ
Fₙ = 30 – 10
Fₙ = 20 N to the right
From the calculations made above, the net force acting on the wagon is 20 N to the right. Hence the wagon will move to the right.