LiOCH₃ would not effectively deprotonate acetylene
<h3>Further explanation</h3>
The equilibrium reaction can be determined if the pKa or Ka values of the acid and conjugate acids (acids in the product) are known.
So it can be concluded that the reacting acid can protonate the base or vice versa base compounds can deprotonating the acid in the reaction, so that the reaction can proceed to the right to form a product or not
In an acid-base reaction, it can be determined whether or not a reaction occurs by knowing the value of pKa or Ka from acid and conjugate acid
Acids and bases according to Bronsted-Lowry
- Acid = donor (donor) proton (H + ion)
- Base = proton (receiver) acceptor (H + ion)
If the acid gives (H⁺), then the remaining acid is a conjugate base because it accepts protons. Conversely, if a base receives (H⁺), then the base is formed can release protons and is called the conjugate acid from the original base.
The value of the equilibrium constant (K)
Can be formulated:
K acid-base reaction = Ka acid on the left / K acid on the right.
or:
pK = acid pKa on the left - pKa acid on the right
K = equilibrium constant for acid-base reactions
pK = -log K
K value> 1) indicates the reaction can take place, or the position of equilibrium to the right.
There is some data that we need to complete from the problem above, the pKa value of the conjugated acid from the base of the compounds above
Whereas the pKa of Acetylene (C₂H₂) itself is = 25
From the conjugated acid pKa value of some of the bases above shows only LiOCH₃ bases that cannot deprotonate acetylene because the pKa value is smaller than the pKa acetylene
The reactions that occur are:
LiOCH₃ + HC ≡ CH ---> HOCH₃ + LiC = CH
The value of the equilibrium constant K is
pK = pKa acetylene - pKa HOCH₃
pK = 25-16
pK = 9
K values <1 indicate a reaction cannot occur
<h3>
Learn more
</h3>
the lowest ph
brainly.com/question/9875355
the concentrations at equilibrium.
brainly.com/question/8918040
the ph of a solution
brainly.com/question/9560687
Keywords : pKa, acetylene, deprotonate, the conjugate acid