Answer:
Fe(NO2)3
Explanation:
A poly atomic ion is an ion that contains more than one atom.
If we look at all the compounds that have been mentioned among the options; KBr and NaF are both ionic but do not contain any covalent poly atomic ion.
However, Fe(NO2)3 contains NO2^+ which is a poly atomic ion that contains the covalent bond.
Answer:
The answers to the questions are given below.
Explanation:
According to Le Chatelier's principle, if an external constrain such as change in concentration, temperature or pressure is imposed on a chemical system in equilibrium, the equilibrium will shift in order to neutralize the effect.
A. Effective of removing ammonia, NH3.
N2(g) + 3H2(g) ⇌ 2NH3(g)
Removing NH3 from the reaction simply means we are left with more reactants and no product. Therefore, the reactant will react to produce the product. Hence, the equilibrium position will shift to the right.
2. Effect of removing H2
N2(g) + 3H2(g) ⇌ 2NH3(g)
Remoing H2 simply means we have more products and less reactant. Therefore, the product will be convert to reactant. Hence, the equilibrium position will shift to the left.
C. Effect of adding a catalyst.
N2(g) + 3H2(g) ⇌ 2NH3(g)
Catalyst does not affect the equilibrium position. It only creates an alternative path to arrive at the product within a short time. Hence, it has no effect.
Answer:
True
Explanation:
Significant digits are numbers that helps to present the precision of measurements calculations.
Numbers that do not contribute to the precision of a reading should not be counted as significant.
There are rules of assigning significant numbers:
- Leading or trailing zeros are insignificant and should only be counted as a place holder.
- All non-zero digits are significant
- Zeroes between non-zero digits are significant.
- Leading zeros in a decimal are significant before the number.
- All the numbers in a scientific notation are significant.
Answer : The rate of effusion of sulfur dioxide gas is 52 mL/s.
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.
or,
..........(1)
where,
= rate of effusion of nitrogen gas =
= rate of effusion of sulfur dioxide gas = ?
= molar mass of nitrogen gas = 28 g/mole
= molar mass of sulfur dioxide gas = 64 g/mole
Now put all the given values in the above formula 1, we get:
Therefore, the rate of effusion of sulfur dioxide gas is 52 mL/s.