Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.
Other countries have reacted the same way as the United States has.
Answer:
The induced emf in the loop is
Explanation:
Given that,
Length of the wire, L = 1.22 m
It changes its shape is changed from square to circular. Then the side of square be its circumference, 4a = L
4a = 1.22
a = 0.305 m
Area of square,
Circumference of the loop,
Area of circle,
The induced emf is given by :
So, the induced emf in the loop is
Answer:
True
Explanation:
Matter can be in the form of a particle or a wave. This is known as the dual nature of matter. This concept was proposed by Louis de Broglie and was named after him. This phenomenon has been observed for all the elementary particles.
The de Broglie wavelength is given by
Where
h = Planck's constant
p = Particles momentum
m = Mass of particle
v = Velocity of particle
Volumetric cylinders and volumetric flasks