DNA is the molecule that carries the genetic code. These are found in the nucleus of cells. They copy themselves during replication when a cell divides and splits.
Explanation:
It is known that formula for the ionization energy of hydrogen atom is as follows.
E =
or, n =
The value of energy is given as 0.544 eV. Therefore, we will calculate the value of n as follows.
n =
=
= 5
Thus, we can conclude that n equals to 5 for a hydrogen atom if 0.544 eV of energy can ionize it.
The elements in Groups 1A(1) and 7A(17) are all quite reactive.
<h3>Major difference between Groups 1A(1) and 7A(17) : </h3>
Group 7's halogens, which are non-metal elements, become less reactive as you move down the group. In contrast to the alkali metals in Group 1 of the periodic table, this trend is the opposite. The most reactive element in Group 7 is fluorine.
Alkali metals are soft and reactive metals. They react vigorously with water and become more reactive. And other hand halogens are reactive non metals.
- Elements of group 1A are known as alkali metals. Elements of this group are lithium, sodium, potassium, rubidium, cesium.
- Reactivity increase down group 1 but decrease up group 7 this is because group 7 elements react by gaining an electron. As one move down the group, the amount of electron shielding increases, meaning that the electron is less attracted to the nucleus.
To know more about Groups 1A(1) and 7A(17) please click here :
brainly.com/question/13063502
#SPJ4
Answer and Explanation:
Dipole-Dipole interactions are <u>weaker than</u> hydrogen bonds.
Hydrogen bonds are a form of dipole-dipole interactions, being the strongest form of dipole-dipole interactions.
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
Unfortunately, we have not fully solved the 'nitrogen problem'. To do this, we must halve the amount of nitrogen we dump into the environment by mid-century or our ecosystems will face epidemics of toxic tides, lifeless rivers, and dead oceans. And that to do that will require, among other things, almost doubling the efficiency of nitrogen use on the world’s farms.