Answer:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Explanation:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Answer:
A regulation game consists of 7 innings unless extended because of a tie score or unless shortened because the home team needs none or only a fraction of its 7th inning or unless 1 team is leading by 10 runs after 5 innings.
Explanation:
Resistance = (voltage) / (current)
Resistance = (6.0 v) / (2.0 A)
Resistance = 3.0 ohms
Answer:
acid
Explanation:
acid provides hydrigen ions
Answer:
Δ v = 125 m/s
Explanation:
given,
mass of space craft = 435 Kg
thrust = 0.09 N
time = 1 week
= 7 x 24 x 60 x 60 s
change in speed of craft = ?
Assuming no external force is exerted on the space craft
now,
a = 2.068 x 10⁻⁴ m/s²
using equation of motion
Δ v = a t
Δ v = 2.068 x 10⁻⁴ x 7 x 24 x 60 x 60
Δ v = 125 m/s