The m/z and relative abundance of the ions contributed to the peak at 21.876 min. The relative abundance will be 21.876%.
<h3>
What is relative abundance?</h3>
- The proportion of atoms with a particular atomic mass present in an element sample taken from a naturally occurring sample is known as the relative abundance of an isotope.
- When the relative abundances of an element's isotopes are multiplied by their atomic masses and the results are added up, the result is the element's average atomic mass, which is a weighted average.
- Chemists often divide the number of atoms in a particular isotope by the sum of the atoms in all the isotopes of that element, then multiply the result by 100 to determine the percent abundance of each isotope in a sample of that element.
To learn more about relative abundance with the given link
brainly.com/question/1594226
#SPJ4
40 drops of blood in a tube that holds 2 mL
Answer:
A. 2 bonds
Explanation:
If you see a charch of ci20 it would easily show the answer.
Tin metal reacts with hydrogen fluoride to produce tin(II) fluoride and hydrogen gas according to the following balanced equation.
Sn(s)+2HF(g)→SnF2(s)+H2(g)
Sn(s)+2HF(g)→
SnF
2
(s)+
H
2
(g)
How many moles of hydrogen fluoride are required to react completely with 75.0 g of tin?
Step 1: List the known quantities and plan the problem.
Known
given: 75.0 g Sn
molar mass of Sn = 118.69 g/mol
1 mol Sn = 2 mol HF (mole ratio)
Unknown
mol HF
Use the molar mass of Sn to convert the grams of Sn to moles. Then use the mole ratio to convert from mol Sn to mol HF. This will be done in a single two-step calculation.
g Sn → mol Sn → mol HF
Step 2: Solve.
75.0 g Sn×1 mol Sn118.69 g Sn×2 mol HF1 mol Sn=1.26 mol HF
75.0 g Sn×
1
mol Sn
118.69
g Sn
×
2
mol HF
1
mol Sn
=1.26 mol HF
Step 3: Think about your result.
The mass of tin is less than one mole, but the 1:2 ratio means that more than one mole of HF is required for the reaction. The answer has three significant figures because the given mass has three significant figures.
132 g of C , 22 g of H , 176 g of O
132 + 22 + 176 => 330 g <span>of the substance
</span>Now convert the masses in <span>moles :
</span>
C = 12.0 u H = 1.0 u O = 16.0 u
C = 132 / 12.0 => 11 moles
H = 22 / 1.0 => 22 moles
O = 176 / 16.0 => 11 moles
Using the values obtained the lowest proportion in mols of elements present, simply divide the values found for the least of them<span>:
</span>
C = 11 / 11 => 1
H = 22 / 11 => 2
O = 11 / 11 => 1
formula empirically <span>is : CH</span>₂O
hope this helps!