A 3.4 × 10⁶ L swimming pool must have a mass of 1.0 × 10⁷ mg Cl₂ to maintain a concentration of 3.0 ppm.
<h3>What is "ppm"?</h3>
"ppm" of "parts per million" is a unit of concentration equivalent to milligrams of solute per liters of solution.
A pool must maintain a chlorine concentration of 3.0 ppm (3.0 mg/L). The mass of chlorine in 3.4 × 10⁶ L is:
3.0 mg Cl₂/L × 3.4 × 10⁶ L = 1.0 × 10⁷ mg Cl₂
A 3.4 × 10⁶ L swimming pool must have a mass of 1.0 × 10⁷ mg Cl₂ to maintain a concentration of 3.0 ppm.
Learn more about ppm here: brainly.com/question/13395702
#SPJ1
<span>
Sodium Oxide= Na2O
The formula mass of Na2O is (2x23) + 16 = 62g/mol
% Na= (46/62) x 100 = 74%
% O= (16/62) x 100 = 26%</span><span>
</span>
Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7