If she can ride her bike 3 miles in 24 minutes how far can she ride her bike in 72minutes. So, if we find out how many times 24 goes into 72 (by dividing it) then times the answer by 3 because that’s how many miles she can do in 24 min. That will give you the answer e.g
Sally can ride her bike 4 miles in 12 minutes so how far can she ride her bike in 24 minutes. You do:
_2_. 2x 4 = 8 so she would be able to
12) 24. Do 8 miles I. 24 minutes.
We know that
X²+y²=9 -------> X²+y²=3²
is the equation of a circle with center (0,0) and radius r=3 units
so
<span>the translation of four units to the right and three units down is equals to move the center (0,0)--------> (0+4,0-3)------> (4.-3)
the new center of the circle is (4,-3)
the new equation is
(x-4)</span>²+(y+3)²=3²
see the attached figure
It's not a as flip is rotational, turn can also be rotational. I would go with slide as translation is a sideways motion
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
29
Step-by-step explanation: