Answer:
1. 9.57 × 10^-9 moles.
2. 7.38mol
Explanation:
1.) To find the number of moles there are in the number of particles in an atom, we divide the number of particles (nA) by Avagadro's constant (6.02 × 10^23)
Hence, to find the number of moles (n) of Manganese (Mn), we say:
5.76 x 10^15 atoms ÷ 6.02 × 10^23
5.76/6.02 × 10^(15-23)
= 0.957 × 10^-8
= 9.57 × 10^-9 moles.
2.) Mole = mass/molar mass
Molar mass of sodium chloride (NaCl) = 23 + 35.5
= 58.5g/mol
mole = 431.6 g ÷ 58.5g/mol
mole = 7.38mol
Answer:
Earth's atmosphere contains a huge pool of nitrogen gas (N2). But this nitrogen is “unavailable” to plants, because the gaseous form cannot be used directly by plants without undergoing a transformation. To be used by plants, the N2 must be transformed through a process called nitrogen fixation.
I think the correct answers from the choices listed above are the first, third and the last option. Ionic compounds are compounds that dissociates into ions when in aqueous solution. From the list, NH4Cl, KF and MgO are the ionic compounds. Hope this answers the question.
Find the molar mass of CaCO3 then subtract the molar mass what it originally weighed and the loss of mass. Hopefully this works!
Answer:
Explanation:
The cell reaction properly written is shown below:
Cu|Cu²⁺ || Ag⁺ | Ag
From this cell reaction, to get the net ionic equation, we have to split the reaction into their proper oxidation and reduction halves. This way, we can know that is happening at the electrodes and derive the overall net equation.
Oxidation half:
Cu ⇄ Cu²⁺ + 2e⁻
At the anode, oxidation occurs.
Reduction half:
Ag⁺ + 2e⁻ ⇄ Ag
At the cathode, reduction occurs.
To derive the overall reaction, we must balance the atoms and charges:
Cu ⇄ Cu²⁺ + 2e⁻
Ag⁺ + e⁻ ⇄ Ag
we multiply the second reaction by 2 to balance up:
2Ag⁺ + 2e⁻ ⇄ 2Ag
The net reaction equation:
Cu + 2Ag⁺ + 2e⁻⇄ Cu²⁺ + 2e⁻ + 2Ag
We then cancel out the electrons from both sides since they appear on both the reactant and product side:
Cu + 2Ag⁺ ⇄ Cu²⁺ + 2Ag