Answer:
15.4 g of sucrose
Explanation:
Formula to be applied for solving these question: colligative property of freezing point depression. → ΔT = Kf . m
ΔT = Freezing T° of pure solvent - Freezing T° of solution
Let's replace data given: 0°C - (-0.56°C) = 1.86 C/m . m
0.56°C / 1.86 m/°C = m → 0.301 mol/kg
m → molality (moles of solute in 1kg of solvent)
Our mass of solvent is not 1kg, it is 150 g. Let's convert it from g to kg, to determine the moles of solute: 150 g. 1kg/1000g = 0.150 kg
0.301 mol/kg . 0.150kg = 0.045 moles.
We determine the mass of sucrose, by the molar mass:
0.045 mol . 342 g/1mol = 15.4 g
<span><span>N2</span><span>O3</span><span>(g)</span>→NO<span>(g)</span>+<span>NO2</span><span>(g)</span></span>
<span><span>[<span>N2</span><span>O3</span>]</span> Initial Rate</span>
<span>0.1 M r<span>(t)</span>=0.66</span> M/s
<span>0.2 M r<span>(t)</span>=1.32</span> M/s
<span>0.3 M r<span>(t)</span>=1.98</span> M/s
We can have the relationship:
<span>(<span><span>[<span>N2</span><span>O3</span>]/</span><span><span>[<span>N2</span><span>O3</span>]</span>0</span></span>)^m</span>=<span><span>r<span>(t)/</span></span><span><span>r0</span><span>(t)
However,
</span></span></span>([N2O3]/[N2O3]0) = 2
Also, we assume m=1 which is the order of the reaction.
Thus, the relationship is simplified to,
r(t)/r0(t) = 2
r<span>(t)</span>=k<span>[<span>N2</span><span>O3</span>]</span>
0.66 <span>M/s=k×0.1 M</span>
<span>k=6.6</span> <span>s<span>−<span>1</span></span></span>
Answer:
Explanation:
There is a formula for this:
M = DRT/P where M = molar mass. This just derived from PV = nRT where you say n = grams/molar mass. However, just with this formula, we can get D which is density at STP (1 atm and 273K). We find that D = 6.52g/L.