Answer:
TRUE
Step-by-step explanation:
tanθ = 1/cotθ
cotθ = 0 when θ = ±(1/2)π, ±(3/2)π, … ±[(2n+1)/2]π.
∴ tanθ is undefined when θ = ±[(2n+1)/2]π.
secθ = 1/cosθ
cosθ = 0 when θ = ±(1/2)π, ±(3/2)π, , …, ±[(2n+1)/2]π.
∴ secθ is undefined when θ = ±[(2n+1)/2]π.
The tangent and secant functions are undefined for the same values of θ.