The chemical reaction equation for this is
XeF6 + 3H2 ---> Xe + 6HF
Assuming gas behaves ideally, we use the ideal gas formula to solve for number of moles H2 with T = 318.15K (45C), P = 6.46 atm, V = 0.579L. Then we use the gas constant R = 0.08206 L atm K-1 mol-1.
we get n = 0.1433 moles H2
to get the mass of XeF6,
we divide 0.1433 moles H2 by 3 since 1 mole XeF6 needs 3 moles H2 to react then multiply by the molecular weight of XeF6 which is 245.28 g/mole XeF6.
0.1433 moles H2 x
x
= 11.71 g XeF6
Therefore, 11.71 g of XeF6 is needed to completely react with 0.579 L of Hydrogen gas at 45 degrees Celcius and 6.46 atm.
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate
You just need to multiply the total mass by the decimal value of the part that is tin. 133.8*0.103=13.8g (following the rules of significant figures).
Answer:
1.26x10^25 atoms of hydrogen
Explanation:
because there are 12 atoms of hydrogen in a molecule of glucose, multiply 12 by Avogadro's number (6.02x10^23) to get how many molecules of hydrogen there are in a mole of glucose. Then multiply that number by 1.75, which is the number of moles of glucose there is in this problem.