This is just testing your ability to recall that kinetic energy is given by:
<span>k.e. = ½mv² </span>
<span>where m is the mass and v is the velocity of the particle. </span>
<span>The frequency of the light is redundant information. </span>
<span>Here, you are given m = 9.1 * 10^-31 kg and v = 7.00 * 10^5 m/s. </span>
<span>Just plug in the values: </span>
<span>k.e. = ½ * 9.1 * 10^-31 * (7.00 * 10^5)² </span>
<span>k.e. = 2.23 * 10^-19 J
so it will be d:2.2*10^-19 J</span>
The change in velocity (v₂ - v₁) is
<em> (-20) / (the object's mass)</em>.
Call it a crazy hunch, but I can't shake the feeling that there was more
to the question before the part you copied, that mentioned the object's
mass, and its velocity before this force came along.
Work in general is given by W=F·d where F is the force vector and d is the displacement vector. The dot symbol is the dot product which is a measure of how parallel two vectors are. It can be replaced by the cosine of the angle between the two vectors and the vectors replaced by their magnitudes. If F and d are parallel then the angle is zero and the cosine is unity. So in this case work can be defined as the product of the magnitudes of the force and distance:
W=Fd
D, I hope this is correct!