Answer: 3.01 * 10^35
Explanation:
500,000,000,000 * 6.02 * 10^23
Where are the answer choices
Before we describe the phases of the Moon, let's describe what they're not. Some people mistakenly believe the phases come from Earth's shadow cast on the Moon. Others think that the Moon changes shape due to clouds. These are common misconceptions, but they're not true. Instead, the Moon's phase depends only on its position relative to Earth and the Sun.
The Moon doesn't make its own light, it just reflects the Sun's light as all the planets do. The Sun always illuminates one half of the Moon. Since the Moon is tidally locked, we always see the same side from Earth, but there's no permanent "dark side of the Moon." The Sun lights up different sides of the Moon as it orbits around Earth – it's the fraction of the Moon from which we see reflected sunlight that determines the lunar phase.
For this question, assume that you have 1 compound. This compound is divided in half once, so you are left with 0.5. That 0.5 that remains is divided in half again, this is the second half-life, and you are left with 0.25. The final half life involves dividing 0.25 in half, which means you are left with 0.125. For the answer to make sense, you need to know your conversions between decimals and fractions. To make it simple, if you have 0.125 and you times it by 8, you are left with your initial value of 1. Therefore, after three half-lives, you are left with 1/8th of the compound.
The volume of H₂ evolved at NTP=0.336 L
<h3>Further explanation</h3>
Reaction
Decomposition of NH₃
2NH₃ ⇒ N₂ + 3H₂
conservation mass : mass reactants=mass product
0.28 NH₃= 0.25 N₂ + 0.03 H₂
2 g H₂ = 22.4 L
so for 0.03 g :