Answer: -33.3 * 10^9 C/m^2( nC/m^2)
Explanation: In order to solve this problem we have to use the gaussian law, the we have:
Eoutside =0 so teh Q inside==
the Q inside= 4.6 nC/m*L + σ *2*π*b*L where L is the large of the Gaussian surface and b the radius of the shell.
Then we simplify and get
σ= -4.6/(2*π*b)= -33.3 nC/m^2
Answer: 539.4 N
Explanation:
Let's begin by explaining that Coulomb's Law establishes the following:
"The electrostatic force between two point charges and is proportional to the product of the charges and inversely proportional to the square of the distance that separates them, and has the direction of the line that joins them"
What is written above is expressed mathematically as follows:
(1)
Where:
is the electrostatic force
is the Coulomb's constant
and are the electric charges
is the separation distance between the charges
Then:
(2)
Isolating and :
(3)
Now, if we keep the same charges but we decrease the distance to , (1) is rewritten as:
(4)
Then, the new electrostatic force will be:
(5) As we can see, the electrostatic force is increased when we decrease the distance between the charges.
The only real difference is that common seismic waves travel through the ground and sound waves travel through the air. If you had a pipe attached to granite and you were listening to it, you might detect both.