Answer:
Option A - Neither. Lines intersect but are not perpendicular. One Solution.
Option B - Lines are equivalent. Infinitely many solutions
Option C - Lines are perpendicular. Only one solution
Option D - Lines are parallel. No solution
Step-by-step explanation:
The slope equation is known as;
y = mx + c
Where m is slope and c is intercept.
Now, two lines are parallel if their slopes are equal.
Looking at the options;
Option D with y = 12x + 6 and y = 12x - 7 have the same slope of 12.
Thus,the lines are parrallel, no solution.
Two lines are perpendicular if the product of their slopes is -1. Option C is the one that falls into this category because -2/5 × 5/2 = - 1. Thus, lines here are perpendicular and have one solution.
Two lines are said to intersect but not perpendicular if they have different slopes but their products are not -1.
Option A falls into this category because - 9 ≠ 3/2 and their product is not -1.
Two lines are said to be equivalent with infinitely many solutions when their slopes and y-intercept are equal.
Option B falls into this category.
The answer is A if I am correct
we;retk;tykh'tk';rekw'kr'e
Use Pythagorean theory
C^2 = a^+ b^2
In this case you have c and a
B^2= c^2-a^2
B^2 = 12^2-5^2
B^2= 144-25
B^2 = 119
Square root both sides
X= 10.90871