Answer:
10.15Ω
Explanation:
From ohm's law,
V = IR...................... Equation 1
Where V = Voltage, I = current, R = resistance.
Assume the voltage across the resistance = V,
Given: I = 6.3 A
Substitute into equation 1
V = 6.3R.................. Equation 2
When an additional resistance of 3.4 Ω is inserted in series with R,
The voltage remain the same, but the current changes
Total Resistance(Rt) = (R+3.4)Ω, I' = 4.72 A
Also from ohm' law,
V = I'Rt............... Equation 3
Substitute the value of I' and Rt into equation 3
V = 4.72(R+3.4)............... Equation 5.
Divide equation 2 by equation 5
V/V = 6.3R/4.72(R+3.4)
1 = 1.335R/(R+3.4)
1 = 1.335R/(R+3.4)
R+3.4 = 1.335R
3.4 = 1.335R-R
3.4 = 0.335R
R = 3.4/0.335
R = 10.15Ω
Answer:
The starting velocity for ball 1 is 1.00 meter/second. Its ending velocity is 0.25 meter/second.
The change in velocity for ball 1 is 0.25 – 1.00 = -0.75 meter/seconds
Answer:
The angular velocity is 15.37 rad/s
Solution:
As per the question:
Horizontal distance, x = 30.1 m
Distance of the ball from the rotation axis is its radius, R = 1.15 m
Now,
To calculate the angular velocity:
Linear velocity, v =
v =
v =
v =
Now,
The angular velocity can be calculated as:
Thus
<span>3.36x10^5 Pascals
The ideal gas law is
PV=nRT
where
P = Pressure
V = Volume
n = number of moles of gas particles
R = Ideal gas constant
T = Absolute temperature
Since n and R will remain constant, let's divide both sides of the equation by T, getting
PV=nRT
PV/T=nR
Since the initial value of PV/T will be equal to the final value of PV/T let's set them equal to each other with the equation
P1V1/T1 = P2V2/T2
where
P1, V1, T1 = Initial pressure, volume, temperature
P2, V2, T2 = Final pressure, volume, temperature
Now convert the temperatures to absolute temperature by adding 273.15 to both of them.
T1 = 27 + 273.15 = 300.15
T2 = 157 + 273.15 = 430.15
Substitute the known values into the equation
1.5E5*0.75/300.15 = P2*0.48/430.15
And solve for P2
1.5E5*0.75/300.15 = P2*0.48/430.15
430.15 * 1.5E5*0.75/300.15 = P2*0.48
64522500*0.75/300.15 = P2*0.48
48391875/300.15 = P2*0.48
161225.6372 = P2*0.48
161225.6372/0.48 = P2
335886.7441 = P2
Rounding to 3 significant figures gives 3.36x10^5 Pascals.
(technically, I should round to 2 significant figures for the result of 3.4x10^5 Pascals, but given the precision of the volumes, I suspect that the extra 0 in the initial pressure was accidentally omitted. It should have been 1.50e5 instead of 1.5e5).</span>