Starting with the least score it would be ; 9.25 , 9.325 , 9.5 , 9.675
<h3>Given:</h3>
<h3>Note that:</h3>
<h3>To find:</h3>
The volume of the given cone.
<h3>Solution:</h3>
Let's solve!
Substitute the values according to the formula.
<u>Therefore</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>cone</u><u> </u><u>is</u><u> </u><u>2863.6</u><u>8</u><u> </u><u>cubic</u><u> </u><u>feets</u><u>.</u>
1. Which polygon or polygons are regular?
A regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length).
Therefore your answer is:
A. equilateral triangle
C. square
2. Which polygon is always irregular?
traingle - NOT (equilateral triangle)
trapezoid - YES
square - NOT
hexagon - NOT (regular hexagon)
486/6 = 81
Square root 81 = one side length = 9m volume = 9^3 = 729
Answer:
Maximum area possible
f(max) = 3906,25 ft²
Dimensions:
a = 62,5 ft
w = 62,5 ft
Step-by-step explanation:
Perimeter of the rectangular fencing P = 250 feet
And sides of the rectangle a and w (width of rectangle)
Then
A = a*w
2a + 2w = 250 ⇒ a = (250 -2w)/ 2 ⇒ a = 125 - w
f(w) = (125 - w ) *w f(w) = 125w - w²
Taking derivatives both sides of the equation
f´(w) = 125 - 2w f´(w) = 0 125 - 2w = 0
w = 125/2
w = 62,5 ft ⇒ a = 125 - 62,5
a = 62,5 ft
f(max) = ( 62,5)²
f(max) = 3906,25 ft²