Answer:
A. The athlete isn’t doing any work because he doesn’t move the weight.
Explanation:
We must remember the definition of work, which says that work is equal to the product of mass by the distance displaced. In this case, the athlete only does work when he lifts the weight from the ground to the point where he holds the weight suspended.
So when he's holding the weight, he doesn't do any work.
Answer: be a better person
Explanation:
Answer:
sin 2θ = 1 θ=45
Explanation:
They ask us to prove that the optimal launch angle is 45º, for this by reviewing the parabolic launch equations we have the scope equation
R = Vo² sin 2θ / g
Where R is the horizontal range, Vo is the initial velocity, g the acceleration of gravity and θ the launch angle. From this equation we see that the sine function is maximum 2θ = 90 since sin 90 = 1 which implies that θ = 45º; This proves that this is the optimum angle to have the maximum range.
We calculate the distance traveled for different angle
R = vo² Sin (2 15) /9.8
R = Vo² 0.051 m
In the table are all values in two ways
Angle (θ) distance R (x)
0 0 0
15 0.051 Vo² 0.5 Vo²/g
30 0.088 vo² 0.866 Vo²/g
45 0.102 Vo² 1 Vo²/g
60 0.088 Vo² 0.866 Vo²/g
75 0.051 vo² 0.5 Vo²/g
90 0 0
See graphic ( R Vs θ) in the attached ¡, it can be done with any program, for example EXCEL
Answer:
The answer is 12.67 TMU
Explanation:
Recall that,
worker’s eyes travel distance must be = 20 in.
The perpendicular distance from her eyes to the line of travel is =24 in
What is the MTM-1 normal time in TMUs that should be allowed for the eye travel element = ?
Now,
We solve for the given problem.
Eye travel is = 15.2 * T/D
=15.2 * 20 in/24 in
so,
= 12.67 TMU
Therefore, the MTM -1 of normal time that should be allowed for the eye travel element is = 12.67 TMU