Explanation:
The given data is as follows.
Volume of lake = =
Concentration of lake = 5.6 mg/l
Total amount of pollutant present in lake =
= mg
= kg
Flow rate of river is 50
Volume of water in 1 day =
= liter
Concentration of river is calculated as 5.6 mg/l. Total amount of pollutants present in the lake are or
Flow rate of sewage =
Volume of sewage water in 1 day = liter
Concentration of sewage = 300 mg/L
Total amount of pollutants = or
Therefore, total concentration of lake after 1 day =
= 6.8078 mg/l
= 0.2 per day
= 6.8078
Hence, =
=
= 1.234 mg/l
Hence, the remaining concentration = (6.8078 - 1.234) mg/l
= 5.6 mg/l
Thus, we can conclude that concentration leaving the lake one day after the pollutant is added is 5.6 mg/l.
<span>Of the answers listed option B looks like the most complete. Ie "Check for the presence of alpha, beta, and gamma particles." the significant presence of these particles is a specific indicator of radioactive decay, i.e: unstable atoms spontaneously undergoing a nuclear reaction.</span>
Koalas are not crusty, but their fur is very coarse, like wool.
Hope this helps.
4.1 h = 14760 s
<span>t 1/2 = ln 2 / k </span>
<span>k = rate reaction = 4.97 x 10^-5 </span>
<span>ln 0.045 / 0.36 = - 4.97 x 10^-5 t </span>
<span>2.08 = 4.97 x 10^-5 t </span>
<span>t = 41839.9 s = 11 h 37 min 19 s</span>
Answer: Solid
Solid particles have the least amount of energy, and gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles. A change in phase may occur when the energy of the particles is changed. There are spaces between particles of matter.
Explanation: