The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
Answer:
Polymerization.
Explanation:
Polymerization can be defined as a type of chemical reaction in which molecules that are relatively small in size chemically combine to form a huge chain of molecules.
Simply stated, polymerization refers to a chemical reaction where two or more smaller molecules react to produce larger molecules of the same network or repetitive structural units.
In polymerization, the relatively small molecules are generally referred to as monomers while the larger molecules they produce are known as polymers.
Polymerization is given by the chemical formula;
nA -----> A(n).
In this scenario, Luis uses a stencil to repeat the same design on each wall to form one long grapevine with a bunch of grapes every foot along its length.
Hence, the type of chemical reaction this best model is polymerization because it involved repeating the same design (monomers) to form a long grapevine with a bunch of grapes (polymers).
Sorry I came a lil late,
The answer to your question is, 2.
Hope this helps! :)
MA= output force/ input force
MA= 100N/20N
MA= 50
The dependant variable is what you measure during the experiment and what is affected in the experiment (this is for question 4) so the answer would be D