The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults
Answer:
Solution:-
The gas is in the standard temperature and pressure condition i.e. at S.T.P
Therefore,
V
i
=22.4dm
3
V
f
=?
As given that the expansion is isothermal and reversible
∴ΔU=0
Now from first law of thermodynamics,
ΔU=q+w
∵ΔU=0
∴q=–w
Given that the heat is absorbed.
∴q=1000cal
⇒w=−q=−1000cal
Now,
Work done in a reversible isothermal expansion is given by-
w=−nRTln(
V
i
V
f
)
Given:-
T=0℃=273K
n=1 mol
∴1000=−nRTln(
V
i
V
f
)
⇒1000=−1×2.303×2×273×log(
22.4
V
f
)
Explanation:
Answer:
The heat of vaporization is typically larger than the heat of fusion
Next question answer:
The liquid water absorbs heat from the skin surface and is transferred to the air when the water evaporates.
Explanation:
Answer:
Explanation:
YES BECAUSE YE SIS YES WHEN YES=
GAMER MOMENT FROM LUIGI FOR⇔