Answer:
The motion of the block is downwards with acceleration 1.7 m/s^2.
Explanation:
First, we will calculate the acceleration using the kinematics equations. We will denote the direction along the incline as x-direction.
Newton’s Second Law can be used to find the net force applied on the block in the -x-direction.
Now, let’s investigate the free-body diagram of the block.
Along the x-direction, there are two forces: The x-component of the block’s weight and the kinetic friction force. Therefore,
As for the static friction, we will consider the angle 31.8, but just before the block starts the move.
Answer:
- Power requirement <u>P</u> for the banner is found to be 30.62 W
- Power requirement <u>P</u> for the solid flat plate is found to be 653.225 W
- Answer for part(c) is explained below in the explanation section and can be summarized as: The main difference between the drags and power requirements of the two objects of same size was due to their significantly different drag-coefficients. The <em>Cd </em>for banner was given, whereas the <em>Cd </em>for a flat plate is generally found to be around <em><u>1.28</u></em><em> </em>which is the value we used in our calculations that resulted in a huge increase of power to tow the flat plate
- Power requirement <u>P</u> for the smooth spherical balloon was found to be 40.08 W
Explanation:
First of all we will establish variables and equations known that are known to us to solve this question. Since we are given the velocity of the airplane:
- v = velocity of airplane i.e. 150 km/hr. To convert it into m/s we will divide it by 3.6 which gives us 41.66 m/s
- The density of air at s.t.p (standard temperature pressure) is given as d = 1.225 kg / m^3
- The power can be determined this equation: P = F . v, where F represents <em>the drag-force</em> that we will need to determine and v represents the<em> velocity of the airplane</em>
- The equation to determine drag-force is:
In the drag-force equation Cd represents the c<em>o-efficient of drag</em> and A represents the <em>frontal area of the banner/plate/balloon (the object being towed)</em>
Frontal area A of the banner is : 25 x 0.8 = 20 m^2
<u>Part a)</u> We will plug in in the values of Cd, d, A in the drag-force equation i.e. Fd = <em>1/2 * 0.06* 1.225 * 20</em> = 0.735 N. Now to find the power P we will use P = F . v i.e.<em> 0.735 * 41.66</em> = <u><em>30.62 W</em></u>
<em></em>
<u>Part b) </u>For this part the only thing that has fundamentally changed is the drag-coefficient Cd since it's now of a solid flat plate and not a banner. The drag-coefficient of a flat plate is approximately given as : Cd_fp = 1.28
Now we will plug-in our values into the same equations as above to determine drag-force and then power. i.e. Fd = <em>1/2 * 1.28 * 1.225 * 20</em> = 15.68 N. Using Fd to determine power, P = 15.68 * 41.66 = <u><em>653.225 W</em></u>
<u><em></em></u>
<u>Part c)</u> The main reason for such a huge power difference between two objects of same size was due to their differing drag-coefficients, as drag-coefficients are generally large for objects that are not of a streamlined shape and leave a large wake (a zone of low air pressure behind them). The flat plate being solid had a large Cd where as the banner had a considerably low Cd and therefore a much lower power consumption
<u>Part d)</u> The power of a smooth sphere can be calculated in the same manner as the above two. We just have to look up the Cd of a smooth sphere which is found to be around 0.5 i.e. Cd_s = 0.5. Area of sphere A is given as : <em>pi* r^2 (r = d / 2).</em> Now using the same method as above:
Fd = 1/2 * 0.5 * 3.14 * 1.225 = 0.962 N
P = 0.962 * 41.66 = <u><em>40.08 W</em></u>
Answer:
There are nine PCNs in the Edmonton area. They work alongside more than 1,100 family doctors in over 330 clinics to provide care for 1.2 million patients. PCN teams include more than 370 nurses, mental health clinicians and other health professionals.
Explanation:
Answer:
Explanation:
Time to mow 1 lawn by Wilma is 80 minutes
so work done in 1 minute by Wilma is given as
Similarly Rocky mow same lawn in 120 minute
so work done in 1 minute by Rocky is given as
now we know that they both worked by "t" time
so total work performed by them
they both mow 2 lawns then it is given as
Answer: When you break on your bike and when you rub your hands together to get warm.
Explanation: Force and friction affect our daily lives in numerous amounts of ways. For instance, when a football is kicked, it moves faster later after some time its force decreases due to friction. A common example of friciton is when a bike stops. When the brakes are applied the friction on the pads cause the bike to stop. The rubbing hands is making friction. Which makes you get warm.