Answer:
The correct option is;
Force of Friction
Explanation:
As coach Hogue rode his motorcycle round in circle on the wet pavement, the motorcycle and the coach system tends to move in a straight path but due to intervention by the coach they maintain the circular path
The motion equation is
v = ωr and we have the centripetal acceleration given by
α = ω²r and therefore centripetal force is then
m×α = m × ω²r = m × v²/r
The force required to keep the coach and the motorcycle system in their circular path can be obtained by the impressed force of friction acting towards the center of the circular motion.
Answer:
D. gravitational potential energy
Explanation:
Answer:
a)
Now we can replace the velocity for t=1.75 s
For t = 3.0 s we have:
b)
And we can find the positions for the two times required like this:
And now we can replace and we got:
Explanation:
The particle position is given by:
Part a
In order to find the velocity we need to take the first derivate for the position function like this:
Now we can replace the velocity for t=1.75 s
For t = 3.0 s we have:
Part b
For this case we can find the average velocity with the following formula:
And we can find the positions for the two times required like this:
And now we can replace and we got:
Answer:
The ring particles are made almost entirely of water ice, with a trace component of rocky material.
Explanation: