1. carbon dioxide is a gas at low temperatures at mars because in the oxidizing environment organic compounds are oxidized to form carbon dioxide.
2. The 1 electron in outermost shell of Na is shared with 7 electrons of outermost shell of chlorine giving neutral charge on compound.
3. Electrostatic force of attraction is between the metal and non-metal.
4. When metal and non metal exchange electrons to form a neutral or no charge compound it is said to have form ionic bonds.
Explanation:
1. Temperature at Mars is very low -80 Fahrenheit (-60 degrees) because water is not present in the planet. Carbon dioxide is abundant in Mars. The atmosphere is oxidizing at Mars which oxidizes the organic compounds and forms carbon dioxide.
2. NaCl combines by sharing of electrons forming ionic bonding. Different atoms of the different element share electrons to form ionic bonds. Such bond is formed when electrons is transferred between the atoms. In the NaCl, Na has 1 electron (electropositive) in its outer shell and chlorine has 7 electrons (electronegative). Both share the electrons getting their octet complete and a neutral charge on the compound formed.
3. Electrostatic force of attraction is between the metal and non-metal when bond is formed. The ionic bonds is formed between metal and non metals when electron exchange takes place. The electrostatic force is the attraction between two opposite charges on the ion.
4. When a metal and non metal exchange electrons in which metal is electropositive and non metal is electronegative the bonds form is called ionic bond. The electron is transferred from metal to non metal and thus giving neutral charge on the compound i.e. the outer shell has its octet complete.
Answer:
hello,
first one is 25.15
second is 301.55
Explanation:
honestly if you look up on the internet there is a converter to get you your answers
The average atomic mass of the imaginary element : 47.255 amu
<h3>Further explanation </h3>
The elements in nature have several types of isotopes
Isotopes are elements that have the same Atomic Number (Proton)
Atomic mass is the average atomic mass of all its isotopes
Mass atom X = mass isotope 1 . % + mass isotope 2.% ..
isotope E-47 47.011 amu, 87.34%
isotope E-48 48.008 amu, 6.895
isotope E-49 50.009 amu, 5.77%
The average atomic mass :
In a food chain, energy is passed through one link to another. When a herbivore eats only a certain fraction of the energy, (which comes from the food) it becomes new body mass; the rest of the energy is lost as waste or used up by the herbivore in order to carry out its life processes (ex. movement, digestion, reproduction). It doesn’t necessarily threaten the plants survival, there’s also a benefit. When a animals poops out the fruit (defecate) in another area those seeds get carried to new places with the help of a dab of fertilizer and a little bit of moisture. They also help supply nutrients when they die and decompose.
Answer:
Less
Explanation:
Since [Cu(NH3)4]2+ and [Cu(H2O)6]2+ are Octahedral Complexes the transitions between d-levels explain the majority of the absorbances seen in those chemical compounds. The difference in energy between d-levels is known as ΔOh (ligand-field splitting parameter) and it depends on several factors:
- The nature of the ligand: A spectrochemical series is a list of ligands ordered on ligand strength. With a higher strength the ΔOh will be higher and thus it requires a higher energy light to make the transition.
- The oxidation state of the metal: Higher oxidation states will strength the ΔOh because of the higher electrostatic attraction between the metal and the ligand
A partial spectrochemical series listing of ligands from small Δ to large Δ:
I− < Br− < S2− < Cl− < N3− < F−< NCO− < OH− < C2O42− < H2O < CH3CN < NH3 < NO2− < PPh3 < CN− < CO
Then NH3 makes the ΔOh higher and it requires a higher energy light to make the transition, which means a shorter wavelength.