Answer:
σ -> 2sp²
π -> 2p
Explanation:
The carbon has valence shell 2s 2p, and, both of them make 3 σ bonds and 1 π bond. The π bond only occurs in multiple bonds.
The σ bonds happen at the hybrids orbitals, which are orbitals formed by the association of the pure orbitals (s, p, d, f). The hybridization occurs to make possible to the atom to do the bonds because the electrons need to be isolated in it.
On the other hand, the π bonds only occur at pure orbitals. The subshell s only has 1 orbital, and the subshell p has 3 orbitals. So, because there are 3 σ bonds, it's necessary 3 hybrids orbitals (1 of s + 2 of p).
The σ bonds happen at the orbital 2sp² and the π bond at the 2p pure orbital.
Answer:
2 Na + 1 Cl2 -> 2 NaCl
Explanation:
The answer is really simple, because if you have 1 nonmetal element that has a subscript of 2, you need to multiply the product and the first reactant by 2 to balance it.
Answer:
The coordination sphere of a complex consists of <u><em>the central metal ion and the ligands bonded to it.</em></u>
Explanation:
The Coordination Compounds are sets of a central metal ion attached to a group of molecules or ions that surround it. They are also called metal complexes or simply complexes. Then they are compounds that have a central atom surrounded by a group of molecules or ions, the latter called ligands.
The central atom must have empty orbitals capable of accepting pairs of electrons, with the transition metals being the ones with the greatest tendency. Because of this, they can act as Lewis acids (electron pair acceptors). The ligands have unshared electron pairs, then acting as Lewis bases (electron pair donors).
When forming a complex, it is said that the ligands coordinate to the metal and the central metal and the ligands attached to it constitute the coordination sphere of the complex.
Finally, <u><em>the coordination sphere of a complex consists of the central metal ion and the ligands bonded to it.</em></u>
B. They work against a strong gravitational force