The Moment of Inertia of the Disc is represented by . (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- - Moment of inertia of the Disk.
- - Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole ():
And the resulting equation is:
The moment of inertia of the Disc is represented by . (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709
Answer:
The radius of the earth is 6,371 km.
The average Earth-Sun distance is 152.09 million km
How many Earths would fit between Earth and the Sun if they are separated by their average distance? Approximately 11,936 Earths.
I didn't really understand the last part, but if you don't get a better answer please mark me as brainliest.
Answer: scenario b and scenario c uses most power
Explanation:
Scenario a:
Work=120J
Time=8 seconds
Power=work ➗ time
Power=120 ➗ 8
Power=15
Power=15 watts
Scenario b:
Work=160J
Time=8 seconds
Power=work ➗ time
Power=160 ➗ 8
Power=20
Power =20 watts
Scenario c:
Work=200J
Time=10 seconds
Power= work ➗ time
Power=200 ➗ 10
Power=20
Power=20 watts
Scenario b and scenario c uses most power