Answer: 40.1%
Explanation: The mass of calcium in this compound is equal to 40.1 grams because there's one atom of calcium present and calcium has an atomic mass of 40.1 . The molar mass of the compound is 100.1 grams. Using the handy equation above, we get: Mass percent = 40.1 g Ca⁄100.1 g CaCO3 × 100% = 40.1% Ca.
Answer: Option (d) is the correct answer.
Explanation:
An atom or element which has the ability to readily gain an electron will have high electronegativity.
Both Beryllium and Calcium are alkaline earth metals and hence they are electropositive in nature.
Whereas both iodine and nitrogen are electronegative in nature. But across the period there is an increase in electronegativity and down the group there is a decrease in electronegativity.
Nitrogen belongs to period 2 and iodine belongs to the bottom of group 17. Thus, we can conclude that nitrogen is more electronegative than iodine.
The correct answer for this question is this one: "<span>In transpiration, because some of its properties change, water undergoes a physical change but keeps its identity. In photosynthesis, because its identity changes, water undergoes a chemical change</span>. "
Hope this helps answer your question and have a nice day ahead.
Are produced 72 grams of water in this reaction.
<h3>Mole calculation</h3>
To find the value of moles of a product from the number of moles of a reactant, it is necessary to observe the stoichiometric ratio between them:
Analyzing the reaction, it is possible to see that the stoichiometric ratio is 1:2, so we can perform the following expression:
So, if there are 2 mols of Ca(OH)2:
Ca(OH)2 | H2O
Finally, just find the number of grams of water using your molar mass:
So, 72 grams are produced of water in this reaction.
Learn more about mole calculation in: brainly.com/question/2845237
Answer:
Gases as might be expected, increase in solubility with an increase in pressure. Henry's Law states that: The solubility of a gas in a liquid is directly proportional to the pressure of that gas above the surface of the solution. ... When the bottle is opened, the pressure above the solution decreases.